
Comparison of M0 and M1 for FVP and Bethe methods

Hans Bichsel

December 18, 2008

e-mail: hbichsel@u.washington.edu

Center for Experimental Nuclear Physics and Astrophysics

Box 354290 University of Washington

Seattle, WA 98195-4290

1 Introduction

In a short review [1] I compared the terms of the B-F and the FVP equations used to calculate

the collision cross section differential in energy loss E (DCCS) for Si. Due to the difference in the

approximation for the GOS shown in Fig. 1, there are large differences in two of the terms in the

equations, but the difference in the total DCCS is smaller. The effect of the differences can be assessed

in the moments of the DCCS. They are given by

Mν(β) =
∫

Eν σ(E; β) dE (1)

where β = v/c is the particle speed, σ(E; β) the DCCS [1, 2] and E the energy loss in a collision. It

is customary to call M1 the stopping power, and M0 the total CCS. The comparison for Si is given in

Table 1.
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Table 1. Comparison of M0 and M1 for B-F and FVP [2].

M0 M1

βγ B-F FVP diff% B-F FVP diff%
0.316 30.32 32.78 8.1 2443.7 2465.3 0.9
1.000 6.729 7.175 6.6 578.3 581.8 0.6
3.981 3.952 4.189 6.0 386.1 387.9 0.5

10.000 3.842 4.068 5.9 416.9 418.6 0.4
100.000 3.842 4.066 5.8 503.8 505.4 0.3

The difference in M0 is quite large for accurate work and should be explored further, especially

for gases.

Figure 1: Generalized oscillator strength GOS for Si for an energy transfer E = 650 eV to the 2p-
shell electrons [4]. Solid line: calculated with Herman-Skilman potential [5], dashed line: hydrogenic
approximation [6]. The horizontal and vertical line define the GOS approximation used in FVP. See
Figs. 3-8 in [4] for details.

2 Analytic calculation of M0 and M1

I have not implemented the B-F method for gases (No tables of GOS were available, but see [2,

3]). Therefore I compare results of M0 and M1 for Ne and Ar with values calculated with analytic
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expressions (“Bethe method”) derived in [7, 8, 9, 10]. The Bethe method used to calculate M0 =

σtot =CCS is

σtot = kR

[
S(−1)

(
ln(2mc2 β2γ2/Ry) − β2 − ln(ctot)

)]
(2)

where kR = 2πz2e4 Ry/(mc2β2) and

S(ν) =
∫

(
E

Ry
)ν f(E, 0) dE (3)

where f(E, 0 is the dipole socillator strength. We calculate ln(ctot) with

S(−1) ln(ctot) = − 2 L(−1) + J1 − J2 (4)

where

L(ν) =
∫

(
E

Ry
)ν f(E, 0) ln

E

Ry
dE. (5)

The quantity J1 − J2 is derived from the generalized oscillator strength (GOS) and for this study

is taken from Table I in [9]. The quantities S(ν) and L(ν) are calculated in the programs BethNe.for

and BethAr.for, which are also used for the calculations described in [2, 11].

The stopping power M1 in the Bethe approximation is

M1 = kR

[
S(0)

(
ln(2mc2 β2γ2/Ry)− β2 − ln I

)]
(6)

where S(0) = Z, and ln I = L(0)/S(0) is the logarithm of the I-value. 1 It is important to note that

no explicit factor derived from the GOS appears here. This is because a sum-rule for the GOS (Eq.

27 in [12]) can be used to calculate M1. In the approximation for the GOS described in Fig. 1 the

same sum-rule is used to give the factor for the delta-function [1]. Therefore for this GOS model, M1

is well approximated. For M0 the quantity J1 − J2 will not be well approximated with this choice

of GOS (but I have not tried to calculate it).

3 Numerical calculation of M0 and M1

DCCS σ(E; β) are calculated for protons with kinetic energy T using the computer-analytic method

with the FVP approximation (FORTRAN program NeSax) [1, 4]. The quantities S(ν), L(ν), the
1For 10 MeV protons,

(
ln(2mc2 β2γ2) − β2

)
= 9.97. With I = 136 eV, the parenthesis is B = 5.06 (this is called

the Bethe stopping number). With I = 150 eV, the parenthesis is B = 4.96, for a change of 2%, while the change in I is
10%. Thus small changes in I change M1 very little. For present purposes shell corrections etc are negligible.
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moments Mν and σtot of Eq. (2) (notation of [7]) are calculated in the computations. Results of

calculations of M0 and σtot for Ne are given (without the coeff. 8πa2
0Ry/mv2) in Table 2, for Ar in

Table 3. The fractional difference between M0 and σtot in percent is given as “diff%”.

Table 2. Comparison of M0 for Ne calculated with FVP and σtot calculated with Eq.(2) (using

J1 − J2 = 2.852).

T (MeV) M0 σtot diff%
10 13.59 11.89 14.3
30 15.65 13.93 12.3

100 17.81 16.06 11.1
300 19.69 17.87 10.2
500 20.58 18.73 9.9

1000 21.95 20.05 9.5
3000 24.76 22.81 8.5

10000 28.66 26.70 7.3
30000 32.57 30.67 6.2

Table 3. Same as Table 2 for Ar using J1 − J2 = 4.268.

T (MeV) M0 σtot diff%
10 34.56 31.02 11.4
30 39.37 35.82 9.9

100 44.40 40.85 8.7
300 48.68 45.13 7.9
500 50.70 47.15 7.5

1000 53.81 50.26 7.1
3000 60.31 56.77 6.2

10000 69.40 65.96 5.2
30000 78.01 75.30 3.6

We see that a similar difference occurs for M0 for Ne and Ar as for Si.

The stopping power M1 for both gases calculated with FVP differs by less than 1% from ICRU,

or from the value calculated with Eq.(6).
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4 Conclusions

Whenever the GOS approximation shown in Fig. 1 is used, e.g. in GEANT 4 or in PENELOPE,

we must expect that M0 will be inaccurate. Since the important quantity for the estimates given in

Tables 2 and 3 is (J1 − J2) used in Eq. (4), the differences depend strongly on it. An extensive list

is given in [9]. In principle the same must be said for S(−1), but these values are self-consistent and

based on new experimental data for f(E; 0) [13, 14] used in programs BethNe.for and BethAr.for.

Since the difference in M0 is related to the differences in the CCS seen in Fig. 5 of [2], there is no

simple correction that can be applied to the FVP-CCS. While a correction of M0 by using Eq. (2)

would correct the straggling function for the number of collisions (Poisson term in Eq. (2) of [2]), it

would not produce the correct shape for the energy loss straggling function, Fig. A.1 in [2].

It must be noted that for electrons the angular distributions of secondary electrons will depend on

the shape of the GOS functions (Seth Hoedl, private communication, Dec. 2008).

References

[1] Comparison of B-F and FVP inelastic collision cross sections, Hans Bichsel, will be posted at

website:

http://faculty.washington.edu/hbichsel/

[2] A method to improve tracking and particle identification in TPCs and silicon detectors, Hans

Bichsel, Nucl. Instr. and Meth. A 562 (2006) 154-197.

[3] Calculation of inner-shell ionization ..., D. Bote and Fancesc Salvat, Phys. Rev. A 77 (2008)

042701

[4] Straggling in thin silicon detectors. Hans Bichsel, Rev. Mod. Phys. 60 (1988) 663.

[5] Manson, ST. (1972). Inelastic collisions of fast charged particles with atoms: ionization of the

aluminum L shell, Phys. Rev. A 6, 1013-1024.

5



[6] Walske, M.C. The stopping power of K-electrons, Phys. Rev. 88 (1952) 1283-1289, and Stopping

power of L-electrons, Phys. Rev. 101 (1956) 940-944.

[7] R. P. Saxon, Phys. Rev. A 8 (1973) 839.

[8] Inokuti, M. (1971). Inelastic collisions of fast charged particles with atoms and molecules- the

Bethe theory revisited. Rev. Mod. Phys. 43, 297-347, and 50, 23 (1978).

[9] M Inokuti, R P Saxon and J. L. Dehmer, Int J Radiat Phys Chem 7 (1975) 109

[10] M Inokuti and Y-K Kim and R L Platzman Phys Rev 164 (1967) 55

[11] Approximation methods to calculate straggling functions H. Bichsel, Nucl. Inst. Meth. A 565

(2006) 1-8.

[12] Penetration of protons, alpha particles and mesons. U. Fano, Ann. Rev. Nucl Sci. 13 (1963) 1-66.

[13] Atomic and molecular photo absorption. Joseph Berkowitz, Academic Press ( A division of

Harcourt) 2002.

[14] Mean excitation energies for the stopping power of atoms... S. Kamakura, N. Sakamoto et al., J.

Appl. Phys. 100 (2006) 064905.

6


